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1 Introduction
A central problem in analytical dynamics is the determination of

the equation of motion for constrained mechanical systems. While
the problem was first formulated and broached by Lagrange [1]
more than 225 years ago it has since been continuously and actively
pursued by numerous scientists, mathematicians, and engineers.
Lagrange specifically invented the method of Lagrange multipliers
to handle constrained motion and provided an approach to deter-
mine the equations of motion for holonomic systems. Gauss [2]
developed a new underlying principle in mechanics for handling
constrained motion, known today as Gauss’s Principle. It is equiv-
alent to d’Alembert’s Principle, which was first enunciated in its
exact form, it appears, by Lagrange. The Gibbs–Appell approach
to the description of constrained motion was independently discov-
ered by Gibbs [3] and Appell [4], and Dirac developed a recursive
scheme using Poisson brackets for singular Hamiltonian systems
[5]. Obtaining the equation of motion for mechanical systems
subjected to sets of nonholonomic constraints was especially diffi-
cult, and general results encompassing general holonomic and non-
holonomic constraints were unavailable. While the method of
Lagrange multipliers can be used, it becomes unfeasible when
dealing with large dimensional systems subjected to many nonholo-
nomic constraints. The difficulty in obtaining a general explicit
equation of motion for systems that have general holonomic and/
or nonholonomic constraints is highlighted in Ref. [6], a gold stan-
dard in classical mechanics, where it is stated early on in the book
that “But there is no general way to attack nonholonomic examples
… the more vicious cases of nonholonomic constraint must be
tackled individually, and consequently in the development of the
more formal aspects of classical mechanics, it is almost invariably
assumed that any constraint, if present, is holonomic.” It should
be noted that the above-mentioned investigations focus on nonholo-
nomic constraints that are in the so-called Pfaffian form, meaning
that the nonholonomic constraints are linear in the generalized
velocities [6–8].

Udwadia and Kalaba [9,10] discovered a simple explicit equa-
tion of motion for general constrained mechanical systems that
have holonomic and/or nonholonomic constraints in which the con-
straints are not necessarily Pfaffian in form and can be any (consis-
tent) set of nonlinear functions of the (generalized) coordinates,
velocities, and time. Furthermore, the constraints need not be func-
tionally independent. This equation is referred to as the Fundamen-
tal Equation of Constrained Motion (FECM) due to its applicability
to systems in which the constraints are, in general, holonomic and/
or nonholonomic. A significant advantage of this equation is that it
provides physical insights into the simplicity with which Nature
seems to execute constrained motion, showing that she seems to
behave much like a control engineer engaged in feedback control.
All the aforementioned investigators used d’Alembert’s principle
(assumption), and/or, equivalently Gauss’s principle, as their start-
ing point [6]. D’Alembert’s principle states that the total work done
by all the forces of constraint under all virtual displacements adds
up to zero. While this assumption, which is at the core of much
of analytical dynamics, seems to work well in many practical situ-
ations, there are equally many instances, in Nature and in engi-
neered systems, where this assumption may not hold. Most often,
this arises when energy is extracted at a constraint, for example,
when damping may be present, or when it is injected into the
system as in maglev trains. Generalized equations for constrained
systems that include constraints that may or may not satisfy
d’Alembert’s principle (assumption) were obtained later [11,12].
The investigations reported in the previous paragraphs all assume

that the mass matrix of the dynamical system is positive definite.
When the minimum number of coordinates are used for modeling
an unconstrained mechanical system, the mass matrix in the
Lagrange equations is usually positive definite [13]. However,
there are many practical situations when the mass matrix may be
singular. A further generalization of the equation of motion for con-
strained systems that may have singular mass matrices was obtained
by Udwadia and Phohomsiri [14]. The structure of the equation of
motion obtained, though, was quite different from the FECM’s
structure when the mass matrix is positive definite. To remedy
this, Udwadia and Schutte [15] developed an equivalent equation
of motion for constrained systems with singular mass matrices
that has the same structure as the FECM in which the mass
matrix is positive definite. Improvements were made by Udwadia
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and Wanichanon [16] that further simplified and generalized this
equation and improved its computational efficiency.
Mechanical systems with singular mass matrices occur most fre-

quently when more (generalized) coordinates are used in describing
a mechanical system than the minimum number required so that the
coordinates are not in fact independent of one another and are sub-
jected to constraints. Perhaps, the most common example of this is
the use of quaternions to describe the rotational motion of a rigid
body. The three Euler angles provide the minimum number of inde-
pendent coordinates (parameters) needed to describe the orientation
of a rigid body. Quaternions are used to avert singularities in the
determination of the angular velocity of a rigid body, a problem
that is difficult to avert when Euler angles are used to describe rota-
tions. However, quaternions are described by four parameters.
Since only three independent parameters are needed to describe
the rotation of a rigid body, the four quaternion parameters are
therefore not independent and are related to one another through
the constraint that their Euclidean norm is unity. And hence, the
rotational motion of a rigid body described by quaternions leads
to a singular mass matrix. There are also many other instances,
when the use of more coordinates than the minimum number
required becomes very helpful in modeling complex systems,
such as, in facilitating the determination of their equations of
motion and/or obtaining the equations in a more computationally
efficient form [17]. Other instances arise when coordinates need
to be added at locations in complex systems that underpin (and/or
make more comprehensible) their dynamical behavior [18]. Often,
one may be interested in decomposing a complex multi-body
system into its constituent components for each of which the equa-
tions of motion are known [14]. One may then want to use these
equations for the components to synthesize the equations of
motion of the composite system. Singular mass matrices can arise
in such circumstances too. Thus, singular mass matrices also arise
when one wants more flexibility in modeling complex mechanical
systems.
In this paper, we develop a new general and explicit equation of

motion for systems that may or may not have singular mass matri-
ces. It is applicable to systems with holonomic and/or non-
holonomic constraints that may or may not be functionally
independent, as well as systems that do or do not satisfy d’Alem-
bert’s assumption. The equation provides useful insights, so far
unavailable, into the simplicity and aesthetics with which Nature
executes constrained motion of mechanical and structural systems
that may have singular mass matrices. We also show that it
reduces to the known FECM when the mass matrix is restricted
to being positive definite.
To introduce the notation and place the problem of constrained

motion in context, we begin by considering the motion of an uncon-
strained system at any time t given by the Lagrange equation

M(q, t)a(t) = Q(q, q̇, t), q(0) = q0, q̇(0) = q̇0 (1)

where q is the generalized coordinate n-vector, Q is the (known)
“given” force which is a function of q, q̇, and t, a is the acceleration
n-vector of the unconstrained system, and n is the number of gener-
alized coordinates. We shall assume that the mass matrix M is a
symmetric n-by-n matrix which in general is positive semidefinite;
it can therefore be singular. By “unconstrained” we mean that the n
coordinates, q, are independent of one another.
We next assume that this unconstrained system is subjected to a

set of m consistent constraints

φi(q, q̇, t) = 0, i = 1, 2, . . . , m (2)

and the initial conditions stated in Eq. (1) satisfy them. These con-
straints include both holonomic and nonholonomic constraints, and
then some. The functions φi can be functionally dependent. Our aim
is to determine the acceleration q̈(t) of the dynamical system
described by Eq. (1) in the presence of the constraints described
by Eq. (2).

Under the assumption that the constraints are C1 functions, we
differentiate them with respect to time to obtain the relation

A(q, q, t)q̈ = b(q, q̇, t) (3)

where A is an m-by-n matrix whose rank is k≤m, and b is an
m-vector. It should be noted that for a given set of initial conditions,
Eq. (2) is equivalent to Eq. (3). We will refer to A as the constraint
matrix.
The constraints imposed on the system described by Eq. (1) give

rise to an additional force n-vector, Qc, called the (generalized)
force of constraint, that acts on it so that the equation of motion
of the constrained system now becomes

M(q, t)q̈ = Q(q, q̇, t) + Qc(q, q̇, t), q(0) = q0, q̇(0) = q̇0 (4)

in which the n-by-n matrix M can be singular, as stated before. The
n-vector q̈ gives the acceleration of the constrained system, whose
explicit form we aim to obtain in Sec. 2.
According to d’Alembert’s assumption, the force of constraint

Qc, which is usually used in classical mechanics, assumes that at
every instant of time t, the work done by Qc under any (non-zero)
virtual displacement, w(t), is zero. A virtual displacement
n-vector at time t is any vector that lies in the null space of the
matrix A, ℕ(A), and therefore satisfies the relation [19]

A(q(t), q̇(t), t)w(t) = 0 (5)

We point out that since Eq. (5) is homogeneous, if any virtual dis-
placement n-vector, w≠ 0, satisfies it, then so does the n-vector αw,
for any scalar α≠ 0, and hence, a virtual displacement need not be
infinitesimal in magnitude.
When the (generalized) force of constraint Qc satisfies d’Alem-

bert’s assumption so that wTQc= 0 at every instant of time, it is
referred to as an ideal constraint (force). However, there are many
systems in which the force of constraint does do work, and there-
fore, we assume here that the work done by the force of constraint
under virtual displacements can be, in general, positive, negative, or
zero. Thus,

wTQc(q, q̇, t) = wTC(q, q̇, t) (6)

where the given n-vector C describes the nature of the non-ideal
constraint force that is acting and depends of course on the specific
system under consideration [11,12]. For brevity, from here on, we
shall suppress the arguments of the various quantities in the equa-
tions, unless required for clarity.
Since the solution of Eq. (5) at each instant of time t is

w = (I − A+A)v (7)

where A+(q, q̇, t) is the Moore–Penrose (MP) inverse of A and v is
any arbitrary n-vector, using Eq. (7) in Eq. (6) yields

vT (I − A+A)Qc(q, q̇, t) = vT (I − A+A)C(q, q̇, t) (8)

from which it follows that

(I − A+A)Qc = (I − A+A)C (9)

Premultiplying both sides of Eq. (4) by (I−A+ A), we obtain

(I − A+A)Mq̈ = (I − A+A)(Q + C) (10)

We are now ready to obtain an alternative form of the Fundamen-
tal Equation of Constrained Motion (FEMC).

2 Alternative Form of the Fundamental Equation
of Constrained Motion
In this section, we obtain the FECM and provide an interpretation

of the manner in which Nature contrives it. We consider in detail the
various terms that appear in the equation and provide additional
geometric and algebraic insights into them.
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We note that a given constrained mechanical or structural system
is fully specified by its n by n matrixM≥ 0, its m by n matrix A, the
given n-vectors Q, C, and the given m-vector b. By specified we
mean here that these entities are known functions of q, q̇, and t.

2.1 Determination of the Fundamental Equation of
Constrained Motion. The acceleration n-vector q̈ of the con-
strained system in Eq. (4) can be described in terms of its orthogonal
projections on ℕ(A) and ℕ(A)⊥=ℝ(AT) as

q̈ = (I − A+A)q̈ + A+Aq̈: = q̈N(A) + q̈N(A)⊥ (11)

The first member on the right in the first equality is the projection
of q̈ on ℕ(A), denoted by q̈N(A), and the second is the projection on
its orthogonal complement, denoted by q̈N(A)⊥ . Since the accelera-
tion q̈ of the constrained system must satisfy the constraint equa-
tions, and therefore must satisfy Eq. (3), the first equality in the
last equation can be rewritten as

q̈ = (I − A+A)q̈ + A+b (12)

Thus, the projection q̈N(A)⊥ of the acceleration q̈ is tri-
vially obtained; it is A+ b. Our main task now is to obtain q̈N(A) =
(I − A+A)q̈. Using Eq. (12) in Eq. (10), we get

(I − A+A)M(I − A+A)q̈ = (I − A+A)(Q + C) − (I − A+A)MA+b

(13)

Equations (3) and (13) can be rewritten as

M̃q̈: =
Ms

A

[ ]
q̈ =

(I − A+A)(Q + C) − (I − A+A)MA+b
b

[ ]
(14)

where we have denoted the symmetric n-by-n matrix

Ms: = (I − A+A)M(I − A+A), M ≥ 0 (15)

and the (m + n)-by-n matrix M̃ as

M̃: =
Ms

A

[ ]
=

(I − A+A)M(I − A+A)
A

[ ]
, M ≥ 0 (16)

The subscript “s” in Eq. (15) signifies that the matrix Ms is
symmetric.
The solution of Eq. (14) is given by

q̈ = M̃
+ (I − A+A)(Q + C) − (I − A+A)MA+b

b

[ ]
+ (I − M̃

+
M̃)γ

(17)

where γ is an arbitrary n-vector.
We observe that, in general, the acceleration of the constrained

system is not necessarily unique because of the second member on
the right-hand side of Eq. (17). However, when the (m+ n) by n
matrix M̃ has full column rank, this second member vanishes,
because then M̃

+
=(M̃

T
M̃)−1M̃

T
so that M̃

+
M̃ = I, and q̈ becomes

unique. Thus, when the matrix M̃ has full column rank, the acceler-
ation of the constrained mechanical system is given by

q̈ = M̃
+ (I − A+A)(Q + C) − (I − A+A)MA+b)

b

[ ]
(18)

Remark 1. In classical mechanics the acceleration vector that is
experimentally observed is unique. We therefore expect our theoret-
ical models to also deliver unique accelerations. Thus, the rank of M̃
can be used as a check to assess the adequacy of a given method of
modeling for a mechanical or structural system. ▪

Our next task is to find the Moore–Penrose (MP) inverse of the
matrix M̃ and simplify the right-hand side of Eq. (18). In order to
do this, we use the following two Lemmas.

LEMMA 1.

(a) If R =
S
T

[ ]
and STT= 0, then R+=[S+ | T+] and

R+ R= S+ S+ T+ T.
(b) When the matrix R described earlier has, in addition, full

column rank, then I= S+ S+ T+ T.

Proof.

(a) This can be proved by directly showing that R+ satisfies the
four MP (Moore–Penrose) conditions. The result is well-
known (e.g., see Ref. [19, Theorem 6.4.5]).

(b) When R has, in addition, full column rank, RTR is non-
singular and positive definite. Hence, R+= (RTR)+ RT=
(RTR)−1RT, so that R+ R= I. Using this in Part (a) of this
lemma, the result follows. ▪

LEMMA 2.

(a) Ms =Ms(I − A+A) = (I − A+A)Ms

(b) M+
s =M+

s (I − A+A) = (I − A+A)M+
s

(19)

(c) M+
s is symmetric (20)

Proof.

(a) Postmultiplying both sides of Eq. (15) by (I−A+ A), we get

Ms(I − A+A) = (I − A+A)M(I − A+A)(I − A+A)

= (I − A+A)M(I − A+A) =Ms
(21)

where the second equality above follows because (I−A+ A)
is idempotent. Similarly, by premultiplying both sides of Eq.
(15) by (I−A+ A), the second equality in Part (a) of Eq. (19)
follows.

(b) The matrix M+
s can always be written as

M+
s = (MT

s Ms)
+MT

s = (MsMs)
+Ms (22)

Postmultiplication by (I−A+ A) then yields

M+
s (I − A+A) = (MsMs)

+Ms(I − A+A)

= (MsMs)
+Ms =M+

s

(23)

where the second equality above follows from the first equal-
ity in Part (a), and the last equality follows from Eq. (22).

Similarly, writing M+
s =MT

s (MsMT
s )

+ =Ms(MsMs)+, and
premultiplying both sides of this relation by (I−A+ A) and
using the second equality in Part (a) gives the second equality
in Part (b) of Eq. (19).

(c) We note that M+
s is a symmetric n by n matrix since

[M+
s ]

T = [MT
s ]

+ =M+
s . ▪

Result 1
When M̃ has full column rank, the acceleration of the constrained
mechanical system is explicitly given by

q̈ =M+
s (Q + C −MA+b) + A+b: =M+

s Δ + A+b (24)

Proof. The matrix

MsA
T = (I − A+A)M(I − A+A)AT

= (I − A+A)M(I − (A+A)T )AT

= (I − A+A)M[I − AT (A+)T ]AT

= (I − A+A)M[I − AT (AT )+]AT = 0

(25)

▪
The second equality follows from the fourth MP condition, and

the last follows from the first MP condition. Hence, the rows of
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the matrixMs (Eq. (15)) are orthogonal to the rows of the constraint
matrix A (Eq. (3)).

Since M̃ =
Ms

A

[ ]
, using Lemma 1, Part (a), we obtain

M̃
+
= [M+

s |A+] (26)

and Eq. (18) becomes

q̈ = [M+
s |A+]

(I − A+A)(Q + C) − (I − A+A)MA+b)

b

[ ]

=M+
s (I − A+A)(Q + C) −M+

s (I − A+A)MA+b + A+b

=M+
s (Q + C −MA+b) + A+b =M+

s Δ + A+b,

(27)

where Δ=Q+C−MA+b. The third equality follows from
Lemma 2, Part (b). ▪

To illustrate the use of Eq. (24) consider the special case of a par-
ticle of mass m0 > 0 moving in three-dimensional configuration
space that is subjected to a given force 3-vector, Q(q, q̇, t), so
that the unconstrained motion of m0 is described by the relation

m0I3a = m0a = Q(q, q̇, t)

where the 3-vector a is the acceleration of the unconstrained system.
The given 3-vector C(q, q̇, t) can similarly be written as
m0d = C(q, q̇, t). Assume that the particle is subjected to holonomic
and/or nonholonomic constraints described by the equation
A(q, q̇, t)q̈ = b(q, q̇, t).
The matrix Ms=m0(I−A+ A)(I−A+ A)=m0(I−A+ A), so that

M+
s =(1/m0)(I − A+A). Equation (24) then gives the explicit equa-

tion of motion of the particle under general constraints as

q̈ = (1/m0)(I − A+A)[m0a + m0d − m0IA
+b] + A+b

= (I − A+A)(a + d − A+b) + A+b

Noting that (I−A+ A)A+= 0, the equation of motion of the con-
strained system is then

q̈ = (I − A+A)(a + d) + A+b (28)

The striking simplicity of this equation has a simple and elegant
geometrical interpretation. The 3-vector q̈ is made up of two
orthogonal components: the projection of q̈ on ℕ(A) is the projec-
tion of the vector (a+ d ) on ℕ(A), and the projection of the q̈ on
ℕ(A)⊥ is A+ b. Figure 1(a) on the left shows the geometric interpre-
tation of Eq. (28) pictorially. The point O= {0}.
Figure 1(b) on the right principally deals with the forces acting on

the system and shows the geometry in terms of these forces. The

figure shows the n-vector Δ for which Δ+MA+ b=Q+C, and
the n-vectors Q=m0a and C=m0d. Since (I−A+ A)MA+ b=
m0(I−A+ A)A+ b= 0, the projection of the n-vector MA+ b on
ℕ(A) is zero. Thus, the n-vector MA+ b belongs to ℕ(A)⊥ and is
orthogonal (perpendicular) to ℕ(A), as shown. Consequently, the
projections of the n-vectors Δ and (Q+C ) on ℕ(A) are identical
and the figure shows that (I−A+ A)Δ= (I−A+ A)(Q+C ). The
n-vector q̈N(A) =M+

s Δ = (I − A+A)Δ/m0 = (I − A+A)(Q + C)/m0
= (I − A+A)(a + d), as also seen in Fig. 1(a), which concentrates
only on the components of the acceleration q̈ of the constrained
system. Lastly, q̈N(A)⊥ = A+b.

Remark 2. More generally, the first member, M+
s Δ, on the right-

hand side of Eq. (24) is simply the orthogonal projection of the
acceleration of the constrained system, q̈ on ℕ(A), since

q̈N(A) = (I − A+A)q̈ = (I − A+A)[M+
s Δ + A+b]

= (I − A+A)M+
s Δ =M+

s Δ =M+
s (Q + C −MA+b) (29)

▪
In the third equality, we have used the fact that (I−A+ A)A+= 0,
and in the fourth equality, we have used Lemma 2, Part (b). Simi-
larly, the orthogonal projection on the subspace ℕ(A)⊥=ℝ(AT) is

q̈N(A)⊥ = A+Aq̈ = A+A[M+
s Δ + A+b]

= A+A[(I − A+A)M+
s Δ] + A+AA+b

= A+b

(30)

which is something we already knew. In the last equality above, we
have used the second MP condition, A+ AA+=A+.
The geometric interpretation obtained from Eqs. (29) and (30),

where the n-vector Δ is such that Δ+MA+ b=Q+C,
q̈ =M+

s Δ + A+b, and M≥ 0, is depicted in Fig 2. It is a generaliza-
tion of Fig. 1(b). As before, the projection of the acceleration
n-vector q̈ on ℕ(A)⊥ is A+ b. However, the orthogonal projection
of the n-vector Δ on ℕ(A), which is (I−A+ A)Δ, no longer, in
general, equals the projection of the n-vector (Q+C) on ℕ(A).
This projection, as shown in Fig. 2, is an n-vector from O to the

open circle along the ℕ(A) axis. The mapping M+
s maps this vector

to one from O to the solid circle (also) along the ℕ(A) axis, because
by Lemma 2, Part (b), M+

s (I − A+A)Δ =M+
s Δ = q̈N(A) (Eq. (21)).

Hence, ‖q̈N(A)‖ ≤ ‖M+
s ‖‖Δ‖, while the magnitude of the compo-

nent q̈N(A)⊥ = A+b is ‖q̈N(A)⊥‖ ≥ ‖MA+b‖/‖M‖.
We observe that the major difference between the special case

described in Fig. 1(b) and the general situation shown in Fig. 2 is
that the n-vector MA+ b in Fig. 1(b) has no projection on ℕ(A)
and hence belongs entirely to ℕ(A)⊥, while in Fig. 2 this does not
happen and MA+ b has, in general, a (nonzero) component in
ℕ(A). As mentioned before, this causes the projection of the

Fig. 1 Orthogonal components of: (a) q̈ in Eq. (28); (b) q̈ in Eq. (27)
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n-vector Δ to be identical to projection of the n-vector (Q+C ) in
the special case, as shown in Fig. 1(b), thereby providing a
simpler geometrical portrait. ▪

Having found q̈ explicitly using Eq. (24), we now determine the
(generalized) constraint force, Qc explicitly.

Result 2
When M̃ has full column rank, the force of constraint Qc is explic-
itly given by

Qc =Mq̈ − Q =M[M+
s (Q + C −MA+b) + A+b] − Q (31)

which can also be written as

Qc = (MM+
s −I)(Q + C −MA+b) + C = (MM+

s −I)Δ + C (32)

The orthogonal projections (components) of Qc on ℕ(A)⊥ and
ℕ(A) are given, respectively, by

Qc
N(A)⊥ = (MM+

s −I)(Q+C−MA+b)+A+AC= (MM+
s −I)Δ+A+AC

(33)

and Qc
N(A)= (I−A+A)C (34)

Proof. Using Eqs. (4) and (24), Eq. (31) follows. Equation (32) also
follows because

Qc =M[M+
s (Q + C −MA+b) + A+b] − Q

= (MM+
s −I)Q +MM+

s C − (MM+
s −I)MA+b

= (MM+
s −I)(Q −MA+b) +MM+

s C

= (MM+
s −I)(Q + C −MA+b) + C = (MM+

s −I)Δ + C

(35)

▪
We next show that the first member on the right-hand side of Eq.

(32), namely (MM+
s −I)Δ, belongs to ℕ(A)⊥. Using Eqs. (9) and

(32), we find that

0 = (I − A+A)(Qc − C) = (I − A+A)[(MM+
s −I)Δ] (36)

This shows that the orthogonal projection of (MM+
s −I)Δ on ℕ(A)

is zero. Thus, the n-vector (MM+
s −I)Δ belongs to ℕ(A)⊥, and so its

orthogonal projection on ℕ(A)⊥ is, of course, itself.
Now, using Eq. (32) and taking the orthogonal projection of Qc

on ℕ(A)⊥, we therefore get

Qc
N(A)⊥ : = A+AQc = A+A[(MM+

s −I)Δ] + A+AC

= (MM+
s −I)Δ + A+AC

(37)

where we have made use of the fact that the projection on ℕ(A)⊥ of
the n-vector (MM+

s −I)Δ (which belongs to ℕ(A)⊥) is itself.
Also, from Eq. (9), the projection of Qc on ℕ(A) is given by

Qc
N(A): = (I − A+A)Qc = (I − A+A)C (38)

where C is a given n-vector for the specific system being modeled.
The sum of Eqs. (37) and (38) yields Qc, which is given by
Eq. (32). ▪

Remark 3. If the m by n constraint matrix A has full column rank n,
then, (I−A+ A)= 0, and ℕ(A)= {0}. Hence, q̈N(A) = 0, and the first
member on the right-hand side of Eq. (24) is zero (Eq. (29),M+

s =0).
Hence,

q̈ = q̈N(A)⊥ = A+b (39)

Equation (39) shows that the acceleration of the constrained
system, q̈, is now solely (and uniquely) dictated by the set of con-
straints to which the system is subjected, and the acceleration q̈
solves the equation Aq̈ = b in the minimum-norm least squares
sense. The constraint force is then obtained using Eqs. (31) and
(39) as

Qc =Mq̈ − Q =MA+b − Q (40)

▪

Remark 4. The condition that the matrix M̃ has full column rank in
Result 1 implies that it maps n-vectors q̈ in a 1-to-1 manner; that is,
two different n-vectors are never mapped to the same vector in
ℜ(m+n). ▪

Remark 5. The matrix (mapping) Ms, which is defined in Eq. (15),
appears prominently in Eq. (24). To provide insight into this
mapping, we consider its geometric and its algebraic descriptions.

(a) Geometric description ofMs: To understand the mappingMs,
we consider its effect on an arbitrary n-vector w. The orthog-
onal projection of w on ℕ(A) is wℕ(A)= (I−A+ A)w, and the
orthogonal projection of the matrixM on the null space ℕ(A)
is Mℕ(A)= (I−A+ A)M. We then find that

MN(A) (I−A+A)w︸�����︷︷�����︸
wN(A)

= (I−A+A)M(I−A+A)w

= (I−A+A)M(I−A+A)︸�����������︷︷�����������︸
Ms

(I−A+A)w︸�����︷︷�����︸
wN(A)

=MswN(A)

(41)

where we have used the idempotence of the matrix (I−A+ A)
in the second equality. Similarly, for any n-vector w∈ℜn,
Msw can be written as

Msw=Ms(I−A+A)w=MswN(A)=MN(A)wN(A) (42)

Equation (42) says that the mapping Ms applied to any
vector w ∈ ℜn is the same as though it were applied to
the component of w∈N(A), i.e., wℕ(A); this is equivalent to
the mapping Mℕ(A) applied to wℕ(A). In what follows, the
vector w in Eq. (42) will be particularized to the acceleration
vector q̈ of the constrained system.

(b) Algebraic description of Ms: Consider the standard singular
value decomposition of the m by n matrix A given by

A = UΣVT = [U1|U2]Σ [V1|V2]
T (43)

where Σ is the m by n diagonal matrix containing the k sin-
gular values of A, and U and V are m-by-m and n-by-n
orthogonal matrices, respectively. The matrix U1 is m by k,
and V1 is n by k, since the rank of A is k. The n-by-(n− k)
matrix V2 spans the null space of A, and the projection
matrix (I − A+A) = (I − V1VT

1 ) = V2VT
2 projects an arbitrary

Fig. 2 Geometrical portrait of generalized forces and their pro-
jections on ℕ(A) and ℕ(A)⊥ that result in the explicit determina-
tion of the acceleration q̈ of the constrained system
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n-vector, w, on to ℕ(A). Hence

Msw= (I−A+A)M(I−A+A)w=V2V
T
2 MV2V

T
2 w:=V2M

⌢
VT
2 w

(44)

where we have defined the symmetric (n− k)-by-(n− k)

matrix M
⌢
:=VT

2 MV2. The last equality in Eq. (44) shows
again that Msw belongs to ℕ(A). Since w is an arbitrary
n-vector, Eq. (44) implies that

Ms=V2M
⌢
VT
2 (45)

▪

2.2 Interpretation of the Fundamental Equation of
Constrained Motion. According to Eq. (24), at each instant of
time Nature appears to find the two orthogonal projections (compo-
nents), q̈N(A)⊥ and q̈N(A), of the acceleration q̈ of the constrained
system by solving linear equations and always using their
minimum-norm least squares solutions. At each instant of time,
she appears to determine the acceleration of the constrained
motion in two sequential steps.

(1) Nature appears first and foremost to satisfy the constraint
Aq̈ = b imposed on the dynamical system. She obtains the
minimum-norm (Euclidean) least squares solution to this
equation, which is q̈ = A+b. This solution turns out to be
q̈N(A)⊥ (Eq. (30)).

(2) Nature then appears to consider an auxiliary system with the
special mass matrix Ms, whose interpretation is given in
Remark 5. The auxiliary system’s mass matrix is subjected
to (i) the prescribed n-vector C for the specific system
under consideration, and (ii) the given (generalized) force
n-vector Q (to which the unconstrained system is subjected,
see Eq. (1)) from which the force contribution provided by
the acceleration q̈N(A)⊥ , namely Mq̈N(A)⊥ =MA+b, is
removed. She uses here the q̈N(A)⊥ that she has already
found in Step (1).

The auxiliary system, whose acceleration is denoted by q̈A, is
thus described by the relation

Msq̈A = C + (Q −MA+b) (46)

Considering this equation as a linear equation in q̈A, Nature again
uses the minimum-norm least squares solution given by

q̈A =M+
s (Q −MA+b + C) (47)

This solution q̈A turns out to be q̈N(A) (Eq. (29)).
Notice that the right-hand side of Eq. (46) is not necessarily in

ℕ(A). It is the special character of matrix Ms chosen by Nature—
for which (I−A+ A)Ms=Ms with (I−A+ A) idempotent—that
permits this. Premultiplication of both sides of Eq. (46) shows
this. At each instant of time, she thus determines the two orthogonal
components q̈N(A) and q̈N(A)⊥ of the acceleration of the constrained
system, and thus, its total acceleration q̈ (Eq. (11)).
In short, we see that at every instant of time Nature appears to

behave like a calculating mathematician. She obtains the accelera-
tion of every constrained mechanical system in two sequential
steps. She first uses the minimum-norm least squares solution to
find q̈N(A)⊥ = A+b by solving the equation Aq̈ = b, which describes
the constraints that the dynamical system is subjected to. She then
uses an auxiliary unconstrained mechanical system described by
Eq. (46) that has a special mass matrix Ms and again she uses the
minimum-norm least squares solution to find q̈A, which is the
same as q̈N(A).

2.3 Properties Associated With the Matrix M̃. Results 1 and
2 require that the matrix M̃ = [Ms|AT ]T has full column rank. Recall
that the matrix Ms= (I−A+ A)M(I−A+ A). We now provide
insights into this requirement and begin by showing that the rank

of M̃ can usually be found more easily by considering the matrix
M̂ = [M|AT ]T instead.

LEMMA 3. The matrix M̃ = [Ms|AT ]T has full column rank if and
only if the matrix

M̂ = [M|AT ]T

has full column rank.

Proof. Part 1: We first show that if M̂ does not have full column
rank, then M̃ does not have full column rank. If M̂ does not have
full column rank, then there exists a nonzero n-vector w such that
M̂w = [M|AT ]Tw = 0, which implies that Mw= 0 and Aw= 0.
Since the solution to the latter equation is w= (I−A+ A)u, where
u is an arbitrary n-vector, the former equation becomes M(I−A+

A)u= 0. Premultiplying both sides of this equation by (I−A+ A),
we find that there exists a vector u such that

0= (I−A+A)M(I−A+A)u= (I−A+A)M(I−A+A)(I−A+A)u=Msw

(48)

In the second equality, we have used the fact that (I−A+ A) is
idempotent. Hence, there exists a non-zero n-vector w such that
Msw= 0 and Aw= 0, so that [Ms|AT ]Tw= M̃w=0. Hence, M̃ does
not have full column rank.
We have therefore shown that the proposition “M̃ has full column

rank” which implies that M̂ has full column rank.
Part 2: We next show that if M̃ does not have full column

rank, then M̂ does not have full column rank. If M̃ does not have
full rank, then there exists a nonzero n-vector vector w such that
Msw= 0, and Aw= 0. Again, the latter equation has the solution
w= (I−A+ A)u, where u is an arbitrary n-vector, and the former
equation now becomes

MSw = [(I − A+A)M(I − A+A)][(I − A+A)u]

= (I − A+A)M(I − A+A)u = 0
(49)

Again, the idempotence of (I−A+ A) is used in the second equal-
ity. Premultiplying both sides of the last equality by uT yields
[uT (I − A+A)M1/2][M1/2(I − A+A)u] = ‖M1/2w‖2 = 0, which
implies that M1/2w= 0, so that Mw= 0. Hence, there exists an
n-vector w such that Mw= 0 and Aw= 0.
We have shown that the proposition “M̂ has full column rank”

implies that M̃ has full column rank. Parts 1 and 2 imply the
result. ▪

We next present a result regarding the column rank of M̃ (Eq.
(16)), which will be used in the following section where we
obtain an algebraic expression for M+

s that appears in Eq. (24).

LEMMA 4. The matrix M̃ = [Ms|AT ]T has full column rank if and
only if the symmetric matrix M

⌢
: = VT

2 MV2 is non-singular (Eq. (43)
for the definition of the matrix V2).

Proof. Part 1: We first show that if M̃ does not have full column

rank, then M
⌢

is singular. If M̃ does not have full column rank,
then there exists an n-vector vector w≠ 0 such that
M̃w = [Ms|AT ]Tw = 0, which implies that

Msw = 0, and Aw = 0 (50)
▪

The solution to the second equation has the form w=
(I − A+A)z = V2(VT

2 z): = V2u ≠ 0, where u is some n-vector.
Since w≠ 0, obviously u≠ 0, else w would be zero. Using this rela-
tion for w and Eq. (45) in the first equation in Eq. (50) gives

Msw = V2 M
⌢
VT
2 w = V2 M

⌢
VT
2 V2u = V2 M

⌢
u = 0 (51)

In the third equality, we have used the fact that VT
2 V2 = I. Premul-

tiplying both sides of the last equality by VT
2 givesM

⌢
u = 0. Since u
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≠ 0,M
⌢
is singular. We have therefore shown that the proposition “M̃

does not have full column rank” implies “M
⌢

is singular.” In other

words, we have shown that the proposition, “M
⌢

is non-singular,”
implies “M̃ has full column rank”

Part 2: We next prove the converse. We show that if M
⌢

is
singular, then M̃ does not have full column rank. If M

⌢
is singular,

then there exists some n-vector u≠ 0 such that M
⌢
u = 0. Noting

that M
⌢
=VT

2 MV2 and VT
2 V2 = I, this equation can be rewritten as

VT
2 MV2u = VT

2 MV2 V
T
2 V2︸�︷︷�︸
=I

u = 0 (52)

Premultiplying both sides of the last equality in Eq. (52) by V2,
we get

V2V
T
2 MV2V

T
2 (V2u) =Ms(V2u) = 0 (53)

which shows that there exists a nonzero vector w=V2u≠ 0 such
that Msw= 0. Since u≠ 0, the n-vector w cannot be zero. If it
were zero, the columns of V2 would have to be linearly dependent,
which is not true because the columns of V2 are orthonormal and
therefore linearly independent.
We also know that Aw = A(V2u) = 0, since V2 spans the null

space of A. We have therefore shown that the proposition, “M
⌢
is sin-

gular,” implies that “there exists an n-vector w≠ 0 such that Msw=
0 and Aw= 0,” i.e., “the matrix M̃ does not have full column rank.”
In other words, we have proved that the proposition, “M̃ has full
column rank,” implies, “M

⌢
is non-singular.” ▪

Remark 6. Lemmas 3 and 4 show that when M≥ 0, the following
three statements are equivalent: (i) M̃ has full column rank, (ii) M̂
has full column rank and (iii) M

⌢
=VT

2 MV2 is non-singular. ▪

2.4 Algebraic Properties of M+
s

LEMMA 5. When the matrix M̃ has full column rank,

(a) the Moore–Penrose(MP) inverse of Ms = V2 M
⌢
VT
2 is given

by M+
s =V2M

⌢−1
VT
2 where M

⌢
: = VT

2 MV2.
(b) MsM+

s =V2VT
2 = (I − A+A) =M+

s Ms

Proof.
(a) By Lemma 4, the matrix M

⌢
is non-singular. Noting that

VT
2 V2 = I, we check that the four MP conditions are satisfied

by M+
s as follows.

(1)

MsM+
s Ms = V2 M

⌢
VT
2 V2M

⌢−1
VT
2 V2 M

⌢
VT
2 = V2 M

⌢
VT
2 =Ms

(2)

M+
s MsM+

s =V2M
⌢−1

VT
2 V2 M

⌢
VT
2 V2M

⌢−1
VT
2 = V2M

⌢−1
VT
2 =M+

s

(3) MsM+
s =V2 M

⌢
VT
2 V2M

⌢−1
VT
2 = V2VT

2 , which is symmetric

(4) M+
s Ms = V2M

⌢−1
VT
2 V2 M

⌢
VT
2 = V2VT

2 , which is
symmetric

(b) MsM+
s =V2 M

⌢
VT
2 V2M

⌢−1
VT
2 = V2VT

2 = (I − A+A).

The last equality in Part (b) of the Lemma is obvious, and
MsM+

s =M
+
s Ms. ▪

We notice that the n-by-n matrix M+
s is obtained by inverting the

non-singular, smaller (n− k) by (n− k) matrix M
⌢
.

Results 1 and 2 along with Lemma 5 lead us to the following
result.

Result 3. When M̃ has full column rank, the acceleration of the con-
strained mechanical system is explicitly given by

q̈ = V2M
⌢−1

VT
2 (Q + C −MA+b) + A+b = V2M

⌢−1
VT
2 Δ + A+b (54)

and

Qc =MV2M
⌢−1

VT
2 (Q + C −MA+b) +MA+b − Q

=MV2M
⌢−1

VT
2 Δ +MA+b − Q (55)

whereM
⌢
=VT

2 MV2 and A = [U1|U2]Σ [V1|V2]T using the notation in
Eq. (43).

▪
Proof. Using Result 2 and Lemma 5 in Eq. (24) the result in Eq.
(54) follows. Equation (55) follows from Eq. (31). ▪

3 Reduction of the New Equation of Motion to the
Known Form of the FECM when M is Positive Definite
The equation of motion given in Result 1 allows the matrix M to

be positive semidefinite. In this section, we show that the equation
of motion obtained in Eq. (24) reduces to the Fundamental Equation
of Constrained Motion that is known when M> 0 [11,12]. We first
develop the following two Lemmas that will be required.

LEMMA 6. When M> 0, the (m+ n)-by-n matrix

Ã = (I − A+A)M1/2

AM−1/2

[ ]
(56)

has full column rank.

Proof. Noting that the positive definite matricesM1/2 andM−1/2 are
non-singular, we have rank[(I−A+ A)M1/2]= rank(I−A+ A)= n−
k and rank(AM−1/2)= rank(A)= k. Also, since

[(I − A+A)M1/2](AM−1/2)T = (I − A+A)M1/2M−1/2AT

= [A(I − A+A)]T = 0 (57)

the rows of the matrix (I−A+ A)M1/2 are mutually orthogonal to
those of AM−1/2. Hence, the matrix Ã has n independent rows,
and its rank is n. ▪

LEMMA 7. When M> 0,

I −M+
s M =M−1/2B+A (58)

where B:=AM−1/2.

Proof. We observe that the matrix Ã defined in Eq. (56) satisfies
both the requirements in Lemma 1 since, (a) by Eq. (57), (I−A+

A)M1/2(AM−1/2)T= 0, and, (b) by Lemma 6, Ã has full column
rank. ▪
Thus, according to Lemma 1

I = [(I − A+A)M1/2]+[(I − A+A)M1/2] + (AM−1/2)+(AM−1/2) (59)

which can be rewritten as

I =M1/2(I − A+A)[(I − A+A)M1/2M1/2(I − A+A)]+[(I − A+A)M1/2]

+ B+AM−1/2

=M1/2(I − A+A)[Ms]
+(I − A+A)M1/2 + B+AM−1/2

=M1/2M+
s M

1/2 + B+AM−1/2 (60)

In the first equality above, we have used the relation X+=
XT(XXT)+, in the second we have used Eq. (15), and in the
third equality we have used Lemma 2, Part(b). Premultiplying
both sides of Eq. (60) by M−1/2 and postmultiplying both sides by
M1/2 give Eq. (58).
We note that postmultiplication of both sides of Eq. (58) by M−1

results in the relation

M+
s =M

−1/2(I − B+B)M−1/2 (61)

which we will use shortly. ▪
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We now consider the known Fundamental Equation of Con-
strained Motion when M> 0 [11,12]. This equation says that an
unconstrained system described by Eq. (1), which is subjected to
a set of consistent constraints given by Eq. (5), along with a speci-
fication of the n-vector C given by Eq. (6), has its acceleration q̈
given explicitly by [Ref. 12, Eq. (39)]

q̈ = a +M−1/2B+(b − Aa) +M−1/2(I − B+B)M−1/2C (62)

where B:=AM−1/2. We now show that when M> 0, Eq. (24)
reduces to Eq. (62).

Result 4
When M> 0, Eq. (24) is the same as Eq. (62).

Proof. First, we observe that when M> 0, then M̃ has full column
rank. This follows from the fact that Ms= [M1/2(I−A+ A)]TM1/2(I
−A+ A), so that

rank(Ms) = rank[M1/2(I − A+A)] = rank(I − A+A) = n − k (63)

But the rows of Ms are orthogonal to the rows of the matrix A
(Eq. (25)), and A has rank k. This shows that M̃ has n independent
rows. Since rank(M̃) = n, M̃ has full column rank.
Using Result 1, the acceleration of the constrained system is then

provided by Eq. (24) (which we repeat here for convenience) as

q̈ =M+
s (Q + C −MA+b) + A+b (64)

Equation (64) can be rearranged as

q̈ =M+
s Q + (I −M+

s M)A+b +M+
s C

=M−1/2(I − B+B)M1/2a +M−1/2B+AA+b

+M−1/2(I − B+B)M−1/2C

= a −M−1/2B+Aa +M−1/2B+AA+b +M−1/2(I − B+B)M−1/2C

= a +M−1/2B+(b − Aa) +M−1/2(I − B+B)M−1/2C (65)

To get the second equality above, we have replaced M+
s in the

first and last member on the right-hand side (in the line above)
using Eq. (61), Q by Ma, and (I −M+

s M) in the second member
using Eq. (58). In the third equality, we have replaced B in the
first member (in the line above) with AM−1/2. In the last equality
we have replaced AA+ b by b, since a necessary and sufficient con-
dition for the constraints to be consistent, i.e., the equation Aẍ = b to
be consistent, is AA+ b= b. ▪

4 Conclusions
This paper develops the equation of motion for general structural

and mechanical systems with positive semidefinite mass matrices
that are subjected to constraints that may be holonomic and/or non-
holonomic. The constraints can be nonlinear in the generalized
coordinates and velocities and need not be functionally indepen-
dent. Systems that do not satisfy d’Alembert’s assumption are
included.
The equation of motion obtained shows the simple and elegant

way in which Nature orchestrates the motion of constrained struc-
tural and mechanical systems. She appears to behave as a calculat-
ing mathematician would and obtains the orthogonal projections
(components) of the acceleration of the constrained system in the
null space of the constraint matrix A and in its orthogonal comple-
ment. The addition of these two components gives her the total
acceleration of the constrained system. In his seminal paper on
mechanics, which dealt with positive definite mass matrices,
Gauss argues that Nature seems to behave like a mathematician
[2] in dealing with the constrained motion of mechanical and struc-
tural systems. Our interpretation extends this argument to include a
much broader—and, from a practical applications standpoint, an
extremely useful—class of systems that have singular mass

matrices. We show in detail the exact manner in which she accom-
plishes this.
Though the equations of motion for most structural and mechan-

ical systems are nonlinear, we observe in this paper that Nature
determines the acceleration of a constrained system at each
instant of time by solving, somewhat surprisingly, linear equations
and always using their minimum-norm least squares solutions.
Since the minimum-norm least squares solution of any set of
linear equations Px= q is x=P+q, where P+ is the (unique)
Moore–Penrose inverse of the matrix P, this observation puts the
notion of the “Moore–Penrose inverse” at the very center of analyt-
ical dynamics making it quintessential to our understanding of the
motion of general constrained structural and mechanical systems.
Thinking along Gauss’s lines [2], we conjecture that at each

instant of time Nature appears to execute constrained motion in
two sequential steps. First and foremost, she ensures that the accel-
eration of the constrained system satisfies the desired constraints.
She accomplishes this by determining the minimum-norm least
squares acceleration, q̈ = A+b, that satisfies the constraint equation
A(q, q̇, t)q̈ = b(q, q̇, t). Geometrically, this solution is the orthogo-
nal projection (component) of the acceleration q̈ on ℝ(AT)=
ℕ(A)⊥. She next finds the component of q̈ that lies in the orthogonal
complement of this space, namely, in ℕ(A). To do this Nature,
appears to use an auxiliary system with a special symmetric mass
matrixMs (Eq. (15)). She also uses a modified force that is obtained
from the “given” force applied to the unconstrained system, by
excluding from it the force generated by the acceleration q̈ = A+b,
which she has already determined. This auxiliary equation she
again solves using its minimum-norm least squares solution.
The paper also shows that the new equation developed here that

gives the explicit acceleration of a structural or a mechanical system
subjected to constraints when the mass matrix of the physical
system is positive semidefinite reduces to the known fundamental
equation of constrained motion for the case when the mass matrix
is strictly positive definite.
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